Skip to contents

The U.S. Department of Agriculture, Forest Service, Forest Inventory and Analysis (FIA) Program provides all sorts of estimates of forest attributes for uses in research, legislation, and land management. The FIA uses a set of criteria to classify a plot of land as "forested" or "non-forested," and that classification is a central data point in many decision-making contexts. A small subset of plots in the U.S. are sampled and assessed "on-the-ground" as forested or non-forested, but the FIA has access to remotely sensed data for all land in the country. Practitioners can develop a model on the more easily-accessible remotely sensed data to predict whether a plot is forested or non-forested.

Usage

forested

forested_wa

forested_ga

Format

A data frame with:

forested

Whether the plot is classified as "forested" or not, as a factor with levels "Yes" and "No".

year

Year when the plot was classified "on-the-ground" as forested or not. The remaining, remotely-sensed variables are measured at different times or averaged over multiple years.

elevation

Elevation, in meters.

eastness

Transformed aspect degrees to eastness (-100 to 100).

northness

Transformed aspect degrees to northness (-100 to 100).

roughness

Degree of irregularity of the plot.

tree_no_tree

LANDFIRE tree/non-tree lifeform mask, as a factor with levels "Tree" and "No tree".

dew_temp

Mean annual dewpoint temperature (1991-2020), in degrees Celsius.

precip_annual

Mean annual precipitation (1991-2020), in mm × 100.

temp_annual_mean

Mean annual temperature (1991-2020), in degrees Celsius.

temp_annual_min

Mean annual minimum temperature (1991-2020), in degrees Celsius.

temp_annual_max

Mean annual maximum temperature (1991-2020), in degrees Celsius.

temp_january_min

Mean minimum temperature in January (1991-2020), in degrees Celsius.

vapor_min, vapor_max

Minimum and maximum annual vapor pressure deficit (1991-2020), in Pa x 100.

canopy_cover

Analytical Tree Canopy Cover, as a percent.

lon, lat

The longitude and latitude of the center of the plot with a slight perturbation.

land_type

Land cover type from European Space Agency (ESA) 2020 WorldCover global land cover product, as a factor with levels "Tree", "Non-tree vegetation", and "Barren".

county

The county in the state, as a factor.

The number of rows varies by state. Washington has 7107 rows, Georgia has 10937.

The Georgia data has one less column than the Washington data as its northness column has been omitted due to issues with the source raster.

An object of class tbl_df (inherits from tbl, data.frame) with 7107 rows and 20 columns.

An object of class tbl_df (inherits from tbl, data.frame) with 10937 rows and 19 columns.

Source

For more information on the source data, see Table 1 in:

White, Grayson W.; Yamamoto, Josh K.; Elsyad, Dinan H.; Schmitt, Julian F.; Korsgaard, Niels H.; Hu, Jie Kate; Gaines III, George C.; Frescino Tracey S.; McConville, Kelly S. (2024). Small area estimation of forest biomass via a two-stage model for continuous zero-inflated data. Forthcoming: arXiv 2402.03263 (ver. 2.0).

For more on data definitions:

Wieczorek, Jerzy A.; White, Grayson W.; Cody, Zachariah W.; Tan, Emily X.; Chistolini, Jacqueline O.; McConville, Kelly S.; Frescino, Tracey S.; Moisen, Gretchen G. (2024). Assessing small area estimates via artificial populations from KBAABB: a kNN-based approximation to ABB. Forthcoming: arXiv 2306.15607 (ver. 2.0.

Source data pre-preprocessed using the FIESTA R Package (GPL-3):

Frescino, Tracey S.; Moisen, Gretchen G.; Patterson, Paul L.; Toney, Chris; White, Grayson W. (2023). FIESTA: A forest inventory estimation and analysis R package. Ecography 2023: e06428 (ver. 1.0).

Data by state

The forested package provides a few data sets, each corresponding to forest data in one state:

  • forested corresponds to Washington state and is aliased as forested_wa.

  • forested_ga corresponds to Georgia.

Examples

# Washington data:
str(forested)
#> tibble [7,107 × 20] (S3: tbl_df/tbl/data.frame)
#>  $ forested        : Factor w/ 2 levels "Yes","No": 1 1 2 1 1 1 1 1 1 1 ...
#>  $ year            : num [1:7107] 2005 2005 2005 2005 2005 ...
#>  $ elevation       : num [1:7107] 881 113 164 299 806 736 636 224 52 2240 ...
#>  $ eastness        : num [1:7107] 90 -25 -84 93 47 -27 -48 -65 -62 -67 ...
#>  $ northness       : num [1:7107] 43 96 53 34 -88 -96 87 -75 78 -74 ...
#>  $ roughness       : num [1:7107] 63 30 13 6 35 53 3 9 42 99 ...
#>  $ tree_no_tree    : Factor w/ 2 levels "Tree","No tree": 1 1 1 2 1 1 2 1 1 2 ...
#>  $ dew_temp        : num [1:7107] 0.04 6.4 6.06 4.43 1.06 1.35 1.42 6.39 6.5 -5.63 ...
#>  $ precip_annual   : num [1:7107] 466 1710 1297 2545 609 ...
#>  $ temp_annual_mean: num [1:7107] 6.42 10.64 10.07 9.86 7.72 ...
#>  $ temp_annual_min : num [1:7107] -8.32 1.4 0.19 -1.2 -5.98 ...
#>  $ temp_annual_max : num [1:7107] 12.9 15.8 14.4 15.8 13.8 ...
#>  $ temp_january_min: num [1:7107] -0.08 5.44 5.72 3.95 1.6 1.12 0.99 5.54 6.2 -4.54 ...
#>  $ vapor_min       : num [1:7107] 78 34 49 67 114 67 67 31 60 79 ...
#>  $ vapor_max       : num [1:7107] 1194 938 754 1164 1254 ...
#>  $ canopy_cover    : num [1:7107] 50 79 47 42 59 36 14 27 82 12 ...
#>  $ lon             : num [1:7107] -119 -123 -122 -122 -118 ...
#>  $ lat             : num [1:7107] 48.7 47.1 48.8 45.8 48.1 ...
#>  $ land_type       : Factor w/ 3 levels "Barren","Non-tree vegetation",..: 3 3 3 3 3 3 2 2 3 2 ...
#>  $ county          : Factor w/ 39 levels "Adams","Asotin",..: 10 34 37 30 33 33 26 27 27 24 ...
head(forested)
#> # A tibble: 6 × 20
#>   forested  year elevation eastness northness roughness tree_no_tree dew_temp
#>   <fct>    <dbl>     <dbl>    <dbl>     <dbl>     <dbl> <fct>           <dbl>
#> 1 Yes       2005       881       90        43        63 Tree             0.04
#> 2 Yes       2005       113      -25        96        30 Tree             6.4 
#> 3 No        2005       164      -84        53        13 Tree             6.06
#> 4 Yes       2005       299       93        34         6 No tree          4.43
#> 5 Yes       2005       806       47       -88        35 Tree             1.06
#> 6 Yes       2005       736      -27       -96        53 Tree             1.35
#> # ℹ 12 more variables: precip_annual <dbl>, temp_annual_mean <dbl>,
#> #   temp_annual_min <dbl>, temp_annual_max <dbl>, temp_january_min <dbl>,
#> #   vapor_min <dbl>, vapor_max <dbl>, canopy_cover <dbl>, lon <dbl>, lat <dbl>,
#> #   land_type <fct>, county <fct>
all.equal(forested, forested_wa)
#> [1] TRUE

# Georgia data:
str(forested_ga)
#> tibble [10,937 × 19] (S3: tbl_df/tbl/data.frame)
#>  $ forested        : Factor w/ 2 levels "Yes","No": 1 1 1 1 1 1 1 1 1 1 ...
#>  $ year            : num [1:10937] 2007 2007 2006 2007 2006 ...
#>  $ elevation       : num [1:10937] 14 66 59 116 283 250 58 140 118 217 ...
#>  $ eastness        : num [1:10937] 0 -53 -82 -78 63 63 31 56 72 -46 ...
#>  $ roughness       : num [1:10937] 0 10 6 20 13 14 1 11 17 13 ...
#>  $ tree_no_tree    : Factor w/ 2 levels "Tree","No tree": 2 1 2 1 1 1 2 1 1 1 ...
#>  $ dew_temp        : num [1:10937] 13.9 13.8 13.5 12.3 10 ...
#>  $ precip_annual   : num [1:10937] 1255 1227 1211 1304 1354 ...
#>  $ temp_annual_mean: num [1:10937] 19.2 19.1 18.8 18.3 16 ...
#>  $ temp_annual_min : num [1:10937] 3.4 3.23 2.71 1.98 -0.43 0.19 3.41 2 1.98 2.68 ...
#>  $ temp_annual_max : num [1:10937] 25.4 25.4 25.1 24.7 21.9 ...
#>  $ temp_january_min: num [1:10937] 13.1 12.8 12.6 11.8 10 ...
#>  $ vapor_min       : num [1:10937] 61 66 57 92 90 61 59 100 98 100 ...
#>  $ vapor_max       : num [1:10937] 1749 1849 1785 1844 1545 ...
#>  $ canopy_cover    : num [1:10937] 22 82 9 66 27 79 30 58 75 90 ...
#>  $ lon             : num [1:10937] -81.4 -82.6 -81.7 -84.9 -84.4 ...
#>  $ lat             : num [1:10937] 32.3 31.7 32.4 32.4 34.1 ...
#>  $ land_type       : Factor w/ 3 levels "Barren","Non-tree vegetation",..: 3 3 2 3 3 3 3 2 3 3 ...
#>  $ county          : Factor w/ 159 levels "Appling","Atkinson",..: 51 80 16 26 28 31 34 26 26 96 ...
head(forested_ga)
#> # A tibble: 6 × 19
#>   forested  year elevation eastness roughness tree_no_tree dew_temp
#>   <fct>    <dbl>     <dbl>    <dbl>     <dbl> <fct>           <dbl>
#> 1 Yes       2007        14        0         0 No tree          13.9
#> 2 Yes       2007        66      -53        10 Tree             13.8
#> 3 Yes       2006        59      -82         6 No tree          13.5
#> 4 Yes       2007       116      -78        20 Tree             12.3
#> 5 Yes       2006       283       63        13 Tree             10.0
#> 6 Yes       2007       250       63        14 Tree             10.8
#> # ℹ 12 more variables: precip_annual <dbl>, temp_annual_mean <dbl>,
#> #   temp_annual_min <dbl>, temp_annual_max <dbl>, temp_january_min <dbl>,
#> #   vapor_min <dbl>, vapor_max <dbl>, canopy_cover <dbl>, lon <dbl>, lat <dbl>,
#> #   land_type <fct>, county <fct>